kuis 9 ibu fina
9 . 1 . 2 M e m b u a t l a t c h m e nj a di S e t: S R = 1 0 J i ka S = 1 , Q ’ ne x t a d a l a h 0 , b e r a p a p u n n i l a i Q c u rr en t : Q ’ ne x t = ( 1 + Q c u rr e n t ) ’ = 0 M a k a , n il a i Q ’ y a n g b a r u na i k k e ge r b a n g N O R a t a s b e r s a m a R = 0 . Q ne x t = ( 0 + 0 ) ’ = 1 J ad i ji ka S R = 1 0 , m a ka Q ’ n e xt = 0 d a n Q n e xt = 1 . B eg i n il a h c a r a m e m b ua t l a t c h m en j ad i s e t ( 1 ) . I npu t S m e r u pa k a n s i ng k a t a n da r i “ s e t. ” P e r ha t i k a n b a h w a i a m e m b u t u h k a n h i ng g a d u a t a h a p ( d u a d e l a y g e r b a n g ) da r i s aa t S m en j ad i 1 h i n gg a Q ne x t m e n j a d i 1 . N a m u n k e t i k a Q ne x t m e n j a d i 1 , o u t p u t t a k l ag i b e r u b a h . K o nd i si i n i d i na m a k a n s t ab l e s t a t e . T im i n g ...